Author Affiliations
Abstract
1 Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 311100, China
2 Research Center for Intelligent Optoelectronic Computing, Zhejiang Laboratory, Hangzhou 311100, China
3 International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
4 Fiber Optics Research Center (FORC), Key Laboratory of Optical Fiber Sensing and Communications, University of Electronic Science and Technology of China, Chengdu 611731, China
We experimentally demonstrate ultra-high extinction ratio (ER) optical pulse modulation with an electro-optical modulator (EOM) on thin film lithium niobate (TFLN) and its application for fiber optic distributed acoustic sensing (DAS). An interface carrier effect leading to a relaxation-tail response of TFLN EOM is discovered, which can be well addressed by a small compensation component following the main driving signal. An ultra-high ER > 50 dB is achieved by canceling out the tailed response during pulse modulation using the EOM based on a cascaded Mach–Zehnder interferometer (MZI) structure. The modulated optical pulses are then utilized as a probe light for a DAS system, showing a sensitivity up to -62.9 dB rad/Hz2 (7 pε/√Hz) for 2-km single-mode sensing fiber. Spatial crosstalk suppression of 24.9 dB along the fiber is also obtained when the ER is improved from 20 dB to 50 dB, clearly revealing its importance to the sensing performance.
Photonics Research
2024, 12(1): 40
Author Affiliations
Abstract
1 Zhejiang University, College of Optical Science and Engineering, Center for Optical and Electromagnetic Research, International Research Center for Advanced Photonics, State Key Laboratory for Modern Optical Instrumentation, Hangzhou, China
2 Zhejiang University, Ningbo Research Institute, Ningbo, China
3 Zhejiang University, Jiaxing Research Institute, Intelligent Optics and Photonics Research Center, Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing, China
Dealing with the increase in data workloads and network complexity requires efficient selective manipulation of any channels in hybrid mode-/wavelength-division multiplexing (MDM/WDM) systems. A reconfigurable optical add-drop multiplexer (ROADM) using special modal field redistribution is proposed and demonstrated to enable the selective access of any mode-/wavelength-channels. With the assistance of the subwavelength grating structures, the launched modes are redistributed to be the supermodes localized at different regions of the multimode bus waveguide. Microring resonators are placed at the corresponding side of the bus waveguide to have specific evanescent coupling of the redistributed supermodes, so that any mode-/wavelength-channel can be added/dropped by thermally tuning the resonant wavelength. As an example, a ROADM for the case with three mode-channels is designed with low excess losses of <0.6, 0.7, and 1.3 dB as well as low cross talks of < - 26.3, -28.5, and -39.3 dB for the TE0, TE1, and TE2 modes, respectively, around the central wavelength of 1550 nm. The data transmission of 30 Gbps / channel is also demonstrated successfully. The present ROADM provides a promising route for data switching/routing in hybrid MDM/WDM systems.
reconfigurability hybrid multiplexing subwavelength grating silicon photonics 
Advanced Photonics Nexus
2023, 2(6): 066004
Author Affiliations
Abstract
1 State Key Laboratory for Modern Optical Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
3 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
A compact on-chip reconfigurable multichannel amplitude equalizer based on cascaded elliptical microrings is proposed and demonstrated experimentally. With the optimized structure of the elliptical microring with adiabatically varied radii/widths, the average excess loss for each channel in the initialized state is measured to be less than 0.5 dB, while the attenuation dynamic range can be over 20 dB. Flexible tunability through the overlapping of the resonance peaks of adjacent wavelength-channels enables even higher attenuation dynamic ranges up to 50 dB. Leveraging the thermo-optic effect and fine wavelength-tuning linearity, precise tuning of the resonance peak can be implemented, enabling dynamic power equalization of each wavelength-channel in wavelength-division-multiplexing (WDM) systems and optical frequency combs. The proposed architecture exhibits excellent scalability, which can facilitate the development of long-haul optical transport networks and high-capacity neuromorphic computing systems, while improving the overall performance of optical signals in WDM-related systems.
Photonics Research
2023, 11(5): 742
作者单位
摘要
国防科技大学 前沿交叉学科学院,湖南 长沙 410073
单频光纤激光具有单色性好、谱功率密度高等特点,在通信传感、雷达、引力波探测、非线性频率变换等领域有广泛的应用需求。目前单频光纤激光技术正朝着更高功率、更宽波段和更高性能等方向发展,是激光技术领域的研究前沿和热点。文中系统梳理了近年来单频光纤激光领域取得的重要进展,具体从单频激光实现方式、功率增长、波长拓展以及性能提升等方面对相关标志性工作进行了总结,讨论了单频光纤激光技术当前所面临的挑战,并展望了其未来发展趋势。
光纤激光 单频 窄线宽 低噪声 fiber laser single-frequency narrow linewidth low noise 
红外与激光工程
2022, 51(6): 20220237
Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Higher-Education Mega-Center, Guangzhou 510006, China
2 National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
3 State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
4 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
5 Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects. Thin-film lithium niobate (TFLN) photonics have emerged as a promising platform for achieving high-performance chip-scale optical systems. Combining a coarse wavelength-division multiplexing (CWDM) devices using fabrication-tolerant angled multimode interferometer structure and high-performance electro-optical modulators, we demonstrate monolithic on-chip four-channel CWDM transmitter on the TFLN platform for the first time. The four-channel CWDM transmitter enables high-speed transmissions of 100 Gb/s data rate per wavelength channel (i.e., an aggregated date rate of 400 Gb/s).Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects. Thin-film lithium niobate (TFLN) photonics have emerged as a promising platform for achieving high-performance chip-scale optical systems. Combining a coarse wavelength-division multiplexing (CWDM) devices using fabrication-tolerant angled multimode interferometer structure and high-performance electro-optical modulators, we demonstrate monolithic on-chip four-channel CWDM transmitter on the TFLN platform for the first time. The four-channel CWDM transmitter enables high-speed transmissions of 100 Gb/s data rate per wavelength channel (i.e., an aggregated date rate of 400 Gb/s).
Journal of Semiconductors
2022, 43(11): 112301
作者单位
摘要
浙江大学光电科学与工程学院,浙江 杭州 310058
硅光技术凭借其CMOS兼容性和高集成度等突出优势,被认为是最具发展潜力的新一代光子集成主流技术,在全球范围内受到极大关注。近年来,无源/有源硅光器件及其集成芯片研究均取得了重要进展。而随着光通信、光互连、光传感、光测量及光计算等新兴领域的飞速发展,硅光技术迎来了更为广阔的应用空间。与此同时,硅光器件及芯片也面临着更高性能、更高密度和更大规模等重要挑战。本文聚焦于面向波分复用、偏振复用、模式复用及混合复用等应用的高性能无源硅光波导器件,重点阐述了其性能突破及功能拓展,并探讨了硅光波导器件的发展前景。
集成光学 硅光 波分复用 偏振复用 模式复用 高性能 
光学学报
2022, 42(17): 1713001
作者单位
摘要
中国计量大学 计量测试工程学院, 杭州 310018
为了获取相对稳定的温度场, 通过实验得到了不同比例下甲烷-氧气预混火焰温度场的变化情况, 并分析了甲烷质量分数对该预混火焰温度场的影响。借助Mckenna燃烧器, 采用数字全息技术, 获取不同甲烷-氧气比下预混火焰温度场的干涉条纹图像, 利用巴赫沃斯低通滤波降低经过预处理的图像的散斑噪声; 通过改进的四向最小二乘解包裹法提取温度场相位分布信息, 根据相位与温度的理论关系, 取得了相应的温度信息数据, 并利用B型热电偶进行了实验验证。结果表明, 利用该方法测得的温度与相同条件下热电偶测得的温度变化基本一致, 证明了数字全息技术测量温度场的可行性; 甲烷与氧气质量分数之比为0.9时, 其温度变化约为10K, 相对其它工况, 其温度场分布最为稳定。该研究为甲烷-氧气预混燃气的相关研究和Mckenna燃烧器的应用提供了理论基础。
全息 温度场 光学测量 预混燃烧 holography temperature field optical measurement premixed combustion 
激光技术
2022, 46(3): 408
作者单位
摘要
国防科技大学 前沿交叉学科学院,湖南 长沙 410073
红外与激光工程
2022, 51(4): 20211103
Author Affiliations
Abstract
1 Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
3 imec USA, Nanoelectronics Design Center, Inc., Kissimmee, Florida 34744, USA
4 Ocean College, Zhejiang University, Zhoushan 316021, China
All-optical silicon-photonics-based LiDAR systems allow for desirable features in scanning resolution and speed, as well as leverage other advantages such as size, weight, and cost. Implementing optical circulators in silicon photonics enables bidirectional use of the light path for both transmitters and receivers, which simplifies the system configuration and thereby promises low system cost. In this work, to the best of our knowledge, we present the first experimental verification of all-passive silicon photonics conditional circulators for monostatic LiDAR systems using a nonlinear switch. The proposed silicon nonlinear interferometer is realized by controlling signal power distribution with power-splitting circuits, allowing the LiDAR transmitter and receiver to share the same optical path. Unlike the traditional concept requiring a permanent magnet, the present device is implemented by using common silicon photonic waveguides and a standard foundry-compatible fabrication process. With several additional phase shifters, the demonstrated device exhibits considerable flexibility using a single chip, which can be more attractive for integration with photodetector arrays in LiDAR systems.
Photonics Research
2022, 10(2): 02000426
Author Affiliations
Abstract
1 State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
2 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Higher-Education Mega-Center, Guangzhou 510006, China
3 National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
4 e-mail: chenkaixuan@m.scnu.edu.cn
A compact and high-performance coarse wavelength-division multiplexing (CWDM) device is introduced with a footprint of 2.1 mm×0.02 mm using an angled multimode interferometer structure based on a thin-film lithium niobate (TFLN) platform. The demonstrated device built on a 400 nm thick x-cut TFLN shows ultra-low insertion losses of <0.72 dB. Measured 3 dB bandwidths are 12.1 nm for all channels, and cross talks from adjacent channels are better than 18 dB. Its peak wavelength positions comply with the CWDM standard with a channel spacing of 20 nm. The filter bandwidth of the proposed CWDM device can be tuned by adjusting the structural parameters. This demonstrated CWDM device will promote future realization of multi-channel and multi-wavelength transmitter chips on TFLN.
Photonics Research
2022, 10(1): 01000008

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!